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[These expressions hold if sin(27rm/N) ~ 0; m = 2, 3, 
. . . , (N-  1)/2, N odd; m = 2 ,3 , . . . , (N/2)-  1, N even.] 

However, 

sin[27r(m/N)] = 0 

{=:}2m/N = K, K E N 

~=}UlZm 

Since m < N/2VN > 3, sin(2mn/N) ~ 0. 
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Abstract  

The conformation of a general puckered ring is 
defined by a linear combination of normal atomic 
displacements, according to the irreducible rep- 
resentations of the DNh symmetry group. Each tw.o- 
dimensional representation contributes two uniquely 
defined primitive modes, superimposed on a one- 
dimensional crown form that only exists for N even, 
adding up to N - 3  primitive forms, for any N. The 
normalized linear coefficients are independent of the 
amplitude of pucker and of the ring numbering 
scheme. The formalism applies to any ring type and 
a quantitative characterization of conformations, 
intermediate between the conventional classical 
forms, is possible. It provides the basis for mapping 
conformations as a function of puckering parameters 
and a simple algorithm for the identification of the 
classical forms. The procedure relates general ring 
conformations to a few simple shapes, familiar to 
chemists, without losing the advantage of quanti- 
tative puckering analysis. 

0108-7681/89/060581-10503.00 

Introduct ion 

Group-theoretical analysis of the normal modes of 
displacement on N-membered polygons provides the 
basis of a quantitative formulation of ring pucker 
(Boeyens & Evans, 1989). These symmetry-adapted 
displacement coordinates are equivalent to the 
general puckering coordinates of Cremer & Pople 
(1975) which accurately describe the nature and 
extent of ring pucker. The description is quantitative 
and unique, but the interpretation of numerical 
values in terms of conformational nomenclature, 
familiar to chemists (boat, chair etc.) is not obvious. 
The relationship between puckering parameters and 
conformational type has been established for five- 
(Altona & Sundaralingam, 1972), six- (Boeyens, 
1978), seven- (Boessenkool & Boeyens, 1980) and 
eight- (Evans & Boeyens, 1988) membered rings, by 
mapping the symmetrical (classical) forms in the field 
of puckering parameters. The classical forms, 
previously identified by energy calculations 
(Hendrickson, 1961, 1964, 1967), map out as pseudo- 
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rotational cycles on (N-3)-dimensional surfaces. 
These surfaces have been represented by a circle for 
five-, a sphere for six-, a torus for seven- and a family 
of tori on a unit sphere for eight-membered rings. 
The transformation from crystallographic atomic 
coordinates to conformational type is achieved by 
mapping the derived parameters of the general ring 
onto the appropriate surface as a function of 
puckering parameters. The conformational type is 
then assigned on account of the proximity to a 
symmetrical form, previously located in the surface. 
This method is adequate for the special case where 
the ring corresponds to a symmetrical form. More 
often, however, the general ring does not map 
exactly onto a symmetrical form. 

The conformation of a heterocyclic ring with vari- 
ous substituents need also not adopt a conformation 
energetically favourable for unsubstituted cyclo- 
alkanes, especially not in the crystal where packing 
forces may be significant. It is here that the 
assignment of conformational type becomes largely 
descriptive. A ring conformation could be described 
as intermediate between at least two classical forms, 
with the share of contributing forms estimated by 
their distance on the surface from the calculated 
surface site of the cyclic fragment. A quantitative 
measure of this distance on the surface should gener- 
ate the coefficients in a linear combination of sym- 
metrical forms. A quantitative expression for the 
deviation of an actual conformation from symmetri- 
cal types in the neighbourhood has been proposed 
before as the Euclidean distance between the points 
in (N-3)-dimensional space (Evans & Boeyens, 
1988). Although this is a useful guide, it is sensitive 
to the degree of pucker, and has no theoretical basis. 

A better description of the intermediate forms has 
now been established, based on the group-theoretic 
model of Pickett & Strauss (1971) and the puckering 
equations of Cremer & Pople (1975). It is suggested 
that the normal modes of displacement, at different 
values of phase angle, and not the recognized sym- 
metrical forms be used as a basis for representing 
any conformation as a linear combination of these 
basic forms. The coefficients are independent of the 
atomic numbering scheme and the amplitude of 
pucker. The ring conformation is readily visualized 
as a combination of the puckered shapes of the basis 
forms in the correct relative proportions. 

Description of ring pucker 
The conformations of a general N-membered ring 
may be generated by the out-of-plane displacements 
of the fiat polygon. According to this model, the 
out-of-plane displacements of a general ring may be 
generated as as linear combination of the normal 

mode displacements (Boeyens & Evans, 1989; Pickett 
& Strauss, 1971), represented by 

F= O2(u,g)+ E Em(g,u)" 
m 

The B2(u.~)representation only occurs for N even, 
with basis 

zj= Q ( -  1) j-I  

Each mode of this representation is a multiple of the 
form 

z j = ( - 1 ) J - '  (1) 

Em(g.,,), or Em' for odd N, represents displacements 

zj= Pm cos[q~m + (2mn/N)(j-  1)]. 

Each mode of this representation is a linear com- 
bination of two mutually orthogonal forms 

zj = cos[(2wn/N)fj- 1)] (2) 

zj = sin[(2m.n/N)(j- 1)]. (3) 

Every conformation is a linear combination of these 
normal modes and hence a linear combination of the 
sets of displacements (1)-(3) (N even) or (2)-(3) (N 
odd), for each m. The same result is obtained from 
the Cremer & Pople (1975) analysis (Boeyens & 
Evans, 1989). 

For an arbitrary conformation, the out-of-plane 
displacements are therefore given by the Cremer & 
Pople (1975) equations 

zj = (1/N)I/2(- l y - ' q  + (2/N) '/2 ~]OmCOS[~m 
m 

+ (2~rm/N)(i- 1)] (N even) 

zj=(2/N)'/2~PmCOS[~p,,,+ (2wrn/N)(j- 1)] (N odd) 
m 

where q, p,,, ~0m are the normalized puckering param- 
eters or symmetry-adapted coordinates. 

These expressions may be written in a number of 
equivalent ways, one of which gives 

Zj = ( 2 / N) l /2 E pmCOS~OmCOS[ ( Z Tt-m / N)q  - 1)] 
m 

- (2/N)~/2~pmsin~o,,,sin[(2mn/N)(j- 1)] 
m 

[ + (I/N)~/2( - l y - l q ] - N  even. 

It has already been recognized for six- and seven- 
membered rings that the coefficients p,,cos~o,,, 
pmSinq~m and q carry the planar ring into the 
normal modes where zj=~s[(2mn/N)(1"-l)and 
( -  1) j- 1/21/2, respectively (Bocian, Pickett, Rounds 
& Strauss, 1975; Pickett & Strauss, 1970; Strauss, 
1971). The Cremer & Pople (1975) equations are an 
explicit statement of this fact. All ring conformations 
can be reduced to linear combinations of the normal 
modes of the Em representations (and the B2u rep- 
resentation for N even) (Boeyens & Evans, 1989). 



DEBORAH G. EVANS AND JAN C. A. BOEYENS 583 

The fundamental primitive forms and their relative 
out-of-plane atomic displacements for five- to eight- 
membered rings are described in Fig. 1 and Table 1. 

A number of forms equivalent to these normal 
modes exist, differing only in the value of the phase 
angle. For each m, any linear combination of forms 
with 

zj = ~°s[(2wn/N)q- 1)] 

is also a normal mode of Era. The equivalent forms at 
phase angles ~0m have 

zj = coS~OmCOS[(2wn/N)(j- 1)] 

- sin ~Omsin[(2 ran/N)0"- 1)]. 

Consider the forms l'4O, 6T 2 and B2,5 in the 
nomenclature of Boeyens (1978) for N = 6, with zj of 

~'4B: cos[4~r/6q- 1)] 

6T2: sin[47r/6q- 1)] 

B2,5: cos 60 ° × ] '4B-sin 60 ° × 6T 2. 

l'4B is equivalent to B2.5, although they differ in 
phase angle by 60 ° . The equivalent forms are them- 
selves normal modes of Em and should be part of the 
extended basis set. Each conformation will still be 
expressed as a linear combination of N - 3  normal 
modes, two from each Em representation, but now 
chosen to have phase angles closest to that of the 
ring of interest. 

Mathematical formulation 

The set of normal modes, whose zj are given by 
( -  ly-~/2 "2, cos[(2~rm/N)q- 1)], sin[(2rrm/N)q- 1)] 
are linearly independent (see Appendix)• These 
modes can therefore form a suitable basis for 
conformational type. 

Group-theoretical analysis shows that the set of 
forms equivalent to the cos form and sin form of 
each m are separated by a constant amount• Given 
any arbitrary ring, its ~o,~ value will lie between those 
of a 'cos-type' form and a 'sin-type' form. 
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Fig. l. Relative out-of-plane displacements for five- to eight-membered rings. 
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The forms equivalent to the cos form and the sin 
form can be expressed as linear combinations of N 
these forms using the Cremer-Pople equations. Any 5 
arbitrary ring can also be expressed as a linear 
combination using this equation. 6 

The arbitrary ring lying at A, qm, ~Om is given by 

z j =  (2/N)t /Z{A(  - lY-1/2 '/2 

+ ~qmCOSq~mCOS[(2wm/N)(j- 1)] 
m 

- ~,qmsin~o, , ,s in[(2mn/N)(j-1)]}.  
m 

For each mode, Era, there is a cos form and a sin 
form lying closest to the ring at am and bm phase 
angles. 

These are also linear combinations of the Cremer 
& Pople normal modes. 

'cos type' 

Zj = E cOSamCOS[ (2 7rrn / N ) ( j  - 1 ) ] 
m 

- sinamsin[(2 re'n/N)(j - 1 )]. 

'sin type' 

zj = ~ cosbmcos[ (2 T/'m / N)q - -  1 ) ] 
m 

- s inbms in[ (2zrm/N)( j -  1)]. 

Because the set of Cremer & Pople normal modes are 
linearly independent, the arbitrary conformation 
may be expressed as a linear combination of the 
forms at am and bin. 

Suppose the coefficients of the 'cos-type' and 'sin- 
type' forms are cm and dm for each m. Then, denoting 
the Cremer-Pople normal modes as Xm, Ym for each 
m, we have 

E qmCOS~OmXm -- qmSinq~m Ym 

= ~ C,,,(cOSamXm -- sinam Ym) 

+ dm(cosb,,,Xm - sinbm Y,,,). 

Since Xm. Ym are linearly independent, we can solve 
for Cm and dm as follows: 

qm( - cos~°msinbm + sin~omcosbm) 

Cm -- sinamcosbm - cosamsinbm 

d m m  
qm(COS~OmSinam - sin~0mCOSam) 

sinamcosbm - cosamsinbm 

When N is even, there is a coefficient for the 
normal mode of the B2u representation. This coeffi- 
cient is q. Where q < 0, the normal mode used in the 

Table 1. Classical nomenclature o f  the primitive f o r m s  

Primitive form Classical nomenclature 
E2" (cos form) Envelope 
E2" (sin form) Twist 

Bz~ Chair 
E2~ (cos form) Boat 
E,,, (sin form) Twist-boat 

E2" (cos form) Boat 
E2" (sin form) Twist-boat 
E3" (cos form) Chair* 
E3" (sin form) Twist-chair* 

B~ Crown 
E,,~ (cos form)] 
E2u (sin form) S Boat-boat 

E38 (cos form)) 
E3g (sin form)S Twist chair 

*See text. 

linear combination is the mirror image of the form zj 
= ( -  1) i -  ~/21/2, i.e. zj = ( -  1)//21/2. This ensures that 
the coefficient is equal in magnitude to q but greater 
than zero. 

In fact, choosing the phase angles of the cos form 
and sin form, so that the phase angle of the general 
ring lies between them, ensures that the coefficients 
in the linear expansion are always positive. 

It is shown in the Appendix that these cos-type 
and sin-type forms are always linearly independent 
for each m. They are not orthogonal. The set of all 
possible ring conformations can be generated by a 
finite-dimensional basis. In all cases, ( N - 3 )  normal 
modes can be used as generating conformations. 
These groups of ( N - 3 )  normal modes are always 
linearly independent. The set of all equivalent cos 
forms and sin forms therefore form an extended 
basis, which consists of a number of overlapping 
subsets, or sub-bases, each with N - 3  linearly 
independent forms. Which subset is used as a basis 
depends on the phase angles of the ring under 
investigation. 

The elements of this extended basis generate a 
reference set of ring conformations, called the primi- 
tive forms. 

The coefficients in the linear expansion are 
independent of phase. The linear coefficients are 
always the same, irrespective of the ring numbering 
used. This is illustrated in the Appendix. 

A description of ring conformation is really a 
description of molecular shape. It should therefore 
be independent of the extent of pucker. The overall 
molecular shape can be generated by adding together 
the primitive forms in the correct proportions. The 
same molecular shape is obtained provided the coef- 
ficients are in the same ratio. The linear coefficients 
are therefore normalized to unity. The method can 
now be applied to any ring type, irrespective of the 
puckering amplitude. For example, these are both 
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boat conformations, but differ in puckering 
amplitude. 

Application of the method 

Every conformation can be expressed as a linear 
combination of primitive forms. The linear coeffi- 
cients are independent of atomic numbering and 
extent of pucker. The primitive forms are relatively 
simple conformations of either Cs or C2 symmetry, 
and are easily interpreted as boat-like, chair-like and 
their twisted counterparts for smaller rings. The sym- 
metrical forms, or classical conformations in conven- 
tional use, take on certain characteristic values of the 
linear coefficients. 

It is important to realize that information on the 
phase angle is lost in the coefficients. The linear 
coefficients are not unique. A description of the ring 
in terms of linear coefficients is only unique if the 
phases of the cos and sin forms are reported. This is 
only true when there is more than one m value with 
pm~O. 

The primitive forms are often the traditional 
classical forms, e.g. for six-membered rings, the cos 
form is a boat and the sin form a twist conformation. 
For five- and six-membered rings a conformation 
may therefore be reported as the linear combination 
of two or three classical forms respectively. The cos 
form of a seven-membered ring where m = 3 takes 
the form of a chair. This is not the chair form of 
Hendrickson (1967). It is suggested that this chair (a 
combination of a primitive boat and a primitive 
chair) be denoted by the symbol H (half-chair) and 
its pseudorotation partner as T (twist-half-chair). 
For rings larger than six-membered, the linear coef- 
ficients are not unique. Different forms may assume 
the same coefficients. Since the phase angles of the 
primitive forms differ, a unique description requil:es 
three terms, like 

X= a(1) + ~bm(~m ) "4- Cm(~0m) , 
m 

where the bm and Cm are coefficients in the linear 
sum; ~0m are the phase angles of the primitive forms, 
characterized by the integer k of kTr/2N, a(1) only 
occurs for N even: (1) denotes the usual B2, mode 
and ( -  1) its mirror image. 

This nomenclature is unique if reported in order of 
increasing m. The linear coefficients give an 
indication of the relative contributions of each primi- 
tive form, and will be the same irrespective of atomic 
numbering, although the phase angles will differ. 

A computer program, CONFOR, has been written 
in Fortran to generate the phase angles of the primi- 
tive forms. It calculates the phases of the primitive 
forms to be used in the linear combination. The 
linear coefficients are solved and normalized. The 
linear coefficients of all the accepted classical forms 
(of five-, six-, seven- and eight-membered rings) have 
been determined. As noted these linear coefficients 
need not be unique. Results show that a set of 
similar coefficients but different phase angles is not 
likely for the classical forms. The only such cases are 
the forms of the S/TS and H/T pseudorotational 
cycles for seven-membered rings. The program calcu- 
lates the sum of the modulus of the difference in 
linear coefficients of any ring and a symmetrical 
form. Below a certain threshold, the ring is taken as 
one of these classical forms, except in the case where 
there is more than one m for which Pm~ O. The phase 
angles are then checked against those of the classical 
forms [BS, H, TS, T(7-M): Boessenkool & Boeyens 
(1980); BC, TBC (8-M): Evans & Boeyens (1988)]. 
The program completes the description of the con- 
formation of intermediate forms and identifies a ring 
if it is a classical form. 

The general structure of the program is given in 
Fig. 2 and Table 2. Details will be published else- 
where, but interested readers are welcome to 
approach the authors for advance copies. 

( S T A R T ~  

Read i ~  
Q, qm 
& ~rn 

subroutine I subroutine 
ODD [ EVEN 

subroutine 
LARGE 

t 
subrout ine 

MINI 

subro u t ine 
SOLVES 

' ~ ]N~<8;is it I Isubroutinel 
( S T O P ) - ' ~ a  classical[ = i WRITE S / - I f o r m ?  I 

Fig 2. The structure of the program CONFOR. 
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Subroutine 

LARGE, ODD, EVEN 

MINI 

SOLVES 

WRITES 

Table 2. The program CONFOR 

Funct ion 

Generates the primitive forms 

Finds the primitive forms closest in 
phase angle 

Solves for the coefficients in the linear 
expansion 

Normalizes the coefficients to unity 
and writes these and the phase 
information to file 

Examples 

Five-membered rings 

The basis is two-dimensional, consisting of the 
equivalent forms 

1 0 
-0"809 ~ - 0 . 8 0 9  - 0.59 ~ , ~  0-59 

0.309 0-309 0.95 ~ -  0.95 
cos form sin form 

Table 3. Analysis of five-membered rings 

a, b are given as percentages. ~o is expressed as a multiple of  ~r/2N. 

Ring Ref. Q2 ~ a ~ E )  + b ~  T) 
1 (a) 0-49 342-90 5 (20)+95 (19) 
2 (a) 0.48 348.7 37 (20) + 63 (19) 
3 (b) 0.45 356-30 79 (20)+21 (19) 
4 (c) 0.422 217.0 95 (12)+5 (13) 
5 (at) 0-353 265-10 27 (14)+73 (15) 

References: (a) Boeyens, Bull, Tuinman & Van Rooyen (1979); (b) 
Ceccarelli, Ruble & Jeffrey (1980); (c) Gal, Feher, Tihanyi, Hor- 
vath, Jerkovich, Argay & Kfilmfin (1980); (d) Cremer & Pople 
(1975). 

Table 4. Analysis of six-membered rings 

Ring 
1 
2 
3 

Linear combination of  the three primitive forms. 

Ref. Q2 Q3 q~ a( __ 1 ) b~(B) cq~(T) 
(a) 0.05 0.554 183.7 92 (+ 1) 7 (12) 1 (14) 
(b) 0.286 0.244 47-0 45 (l) 31 (4) 24 (2) 
(c) 0-406 -0.216 196.0 34 ( -  l) 21 (12) 35 (14) 

References: (a) Cremer & Pople (1975); (b) Gal, Feher, Tihanyi, 
Horvath, Jerkovich, Argay & Kfilmfin (1980); (c) Boeyens (1978). 

These are equivalent to the envelope and twist forms 
(Altona & Sundaralingam, 1972). A number of rings 
reported in the literature have been analysed and the 
results are given in Table 3. 

Ring 1 is best described as a twist form according 
to the program CONFOR. These results demonstrate 
the ease of interpretation of this method. Ring 2 is 
a twist conformation showing distortion to an 
envelope form. The method gives an exact value for 
the degree of this distortion. A description like this is 
more familiar to chemists than the puckering param- 
eters or a linear combination of "E"  and "T",  viz 

ring 2 = 0.47"E" -0-09"T".  

Six-membered rings 

The basis is three-dimensional, 
equivalent forms: 

consisting of 

0.707 1 
-0.707 ~ -0.707 -0.5 ~ -0-5 

0-707 0.707 - 0.5 0.5 
- 0-707 1 
crown boat 

-0-866 ~ ~ ]  0.866 

0-866 - 0.866 
0 

twist 

A number of rings reported in the literature have 
been analysed and the results are given in Table 4. 

The pyranoid ring (1) is shown by program 
CONFOR to be much like a crown form. The distor- 
tion towards the form 

is estimated as a 10% contribution from the primi- 
tive boat at ~ = rr, a conclusion easily reached from 
an examination of the linear coefficients. Ring 2 is a 
cyclohexene. Although the extent of pucker is much 
less, the linear coefficients give a readily interpretable 
description of ring conformation. Ring 3 has been 
described as midway between H, E and S. The 
conformation found here is intermediate between a 
boat, twist and a chair form. These two assignments 
are not contradictory. The E, H and S forms are 
themselves mixtures of the chair, boat and twist 
forms. The ring conformation could be expressed as 
a linear combination of the E, H and S forms since 
E, H and S forms can be expressed as a linear 
combination of the independent forms. In other 
words, any conformation can be expressed as a linear 
combination of these mixed forms, but such a 
scheme would be complicated. Not much additional 
information is gained in using these classical forms. 
These are also not linearly independent. 

Discussion 

The normal displacement modes of a planar N- 
membered regular polygon serve as a basis for the 
conformation of a puckered N-membered ring. Two 
linearly independent modes, equivalent to the mutu- 
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ally orthogonal cosine and sine forms of each Em 
representation and one of the two possible equivalent 
modes of B2, can be combined to match the 
puckering parameters of any conformation. Any 
analysis incorporates an appropriate subset of N - 3  
linearly independent, though not necessarily orthog- 
onal, elements, chosen from an extended basis set, to 
define the closest primitive forms in the vicinity of 
the unknown conformation. The conformation is 
reduced to a linear combination of these primitive 
forms, resulting in a unique quantitative symbolic 
description, in terms of simple familiar shapes. This 
approach is superior to the graphical procedures in 
common use since the quantitative nature of 
numerical puckering analysis is preserved. 

It is noted from Fig. 1 that the cos-type and 
sin-type forms for m = 2, 3 in eight-membered tings 
are equivalent. The sin form is like a primitive phase 
for the cos form. In a case like this the linear 
expansion is not unique for all phases. The coeffi- 
cients of the cos form and the sin form are inter- 
changeable (see Appendix). If two rings are therefore 
compared to see whether they are of the same con- 
formational type it is advisable to ensure, in the first 
instance, by relative rotation if necessary, that the 
phases of lowest index (m = 2) have matching values. 
The identity of the rings can then be considered 
established only if the calculated phases correspond 
for all m. 

The definition of conformation in terms of perpen- 
dicular displacements only contracts the model from 
3N Cartesian coordinates to N - 3  parameters. This 
projection from 3 N - 6  conformational space to an 
N - 3  subspace has been interpreted (Petit, Dillen & 
Geise, 1983) to imply that conformational analysis 
requires a prior definition of standard conformations 
in addition to the puckering parameters. This seems 
to invalidate the procedure of mapping conforma- 
tions to normalized surfaces without taking the 
amplitude of pucker into account. However, as noted 
by Cremer (1984), perpendicular displacements relate 
to one-dimensional shape functions, by definition 
independent of the amplitude of pucker. It is this 
shape, rather than the extent of distortion from 
planarity, that should be equated with the notion of 
conformation. 

The method is independent of absolute molecular 
geometry or chemical identity. The conformation 
only depends on the relative contributions from 
the group-theoretic modes of displacement. Any 
puckered six-membered ring with 100% contribution 
from the B2, mode has a chair conformation. Any 
six-membered boat has the shape arising from the 
cos mode of E2, atomic displacements only. The 
envelope form is a 59:41 combination of an E2, and 
the B2u representations. The amount of pucker 
cannot affect this ratio. Even heterocyclic rings with 

irregular molecular geometry can assume a chair 
shape, at ~o = 0 = 0. The fact that the ring does not 
display D3d symmetry in three dimensions is irrele- 
vant, since the shape factor of interest is strictly 
one-dimensional. 

APPENDIX 

Characteristics of the linear coefliecients 

1. Linear independence of the Cremer-Pople normal 
modes 

Owing to the nature of the primitive forms for 
each m, cos[2 zrm(/" - 1 )/N], sin[2 mn(j - 1 )/N], they 
are mutually orthogonal. That is, 

E ZcosjZsinj -- O. 

In order for the set of these forms over all m to be a 
suitable basis, they should be linearly independent. 
By the fact that these forms are normal modes of 
different symmetry types, they are linearly 
independent. 

Proof" To prove linear independence, we first show 
that the normal modes are orthogonal. That is 

~,zTz ~ = O, a, fl normal modes. 

For N even, consider 
N 

cos['rr(/" - 1 ) ]cos[ ( 2 wrn / N)(j - 1 ) ]. 
j = l  

With the identities 

cos(A + B) = cosAcosB - sinAsinB 

cos(A - B) = cosAcosB + sinAsinB, 

this is equivalent to 

½ COS[(Tr + 2zrm/N)(j- 1)] 
~ j - -  ! 

- } 
+ y cos[( - 2 w n / N ) ( j -  1)] . 

j = ]  

Using the lemma given in a previous paper (Boeyens 
& Evans, 1989), this reduces to zero, since sin(Nzr/2 
+ mzr) = 0 if N is even. 

Similarly, 

N 

cos['n4j - 1 )]sin[(2 zrm / N)(j - 1 )] 
j = l  

= sin[(~ + 2~rm/N)(/- 1)] 
I . j =  1 

- ~ s i n [ ( r r -  2 ~ n / N ) ( j - 1 ) ]  
j = !  

=0. 



588 C O N F O R M A T I O N A L  ANALYSIS OF RING PUCKER 

Therefore, cos['rt(/-1)] or ( - l y  -1 is orthogonal 
to any linear combination of acos[(2,mn/N)q-1)] 
+ bs in[ (2mn/N)q-  1)], as required. 

For N even or odd, we need 

cos[(2rr]N)q-  1)M~], s in[(2rr /N)q-  1)M,], 

cos[(2rr /N)q-  1)M2], sin[(Zrr/N)q- 1)M2], 

are orthogonal. 

(a) ~cos [ (2~r /N)q-  1)M,]cos[(2rr/N)q- 1)Mz] 
J 

= ½~cos[(Z~r/N)q- 1)(M, + Mz)] 
J 

+ ½~cos[(Z~r/N)q- 1)(M, - Mg]  
J 

- - 0 .  

(b) ~s in[ (Z~r /N)q-  1)M,]sin[(Z'tr/N)q- 1)M2] 
J 

= -½~]cos[(27r/N)(j-1)(M, + M2)] 
J 

1 ( _ + ~ c o s [ ( 2 r r / N ) O ' -  1)(M, ME)] 
J 

= 0 .  

(c) ~s in [ (2~- /N)q-  1)Mdcos[(2rr/N)q- 1)M2] 
J 

= ~cos[ (2~/N)q-  1)M, 
J 

- ~r/2]cos[(2~-/N)q- l)Mz] 

= ½ ~ c o s [ -  rr/2 + (2zr/N)(j-1)(Ml + M2) ] 
J 

+ ½~]cos[- rr/2 + (2rr/N)(j-  I)(M~ - )142)] 
J 

- - 0 .  

(d) ~s in [ (2 r r /N) ( j -  1)M2]cos[(2rr/N)(j- 1)Ml] = 0. 
J 

(By analogy with c.) 

We now show orthogonality =¢, linear indepen- 
dence. 

Suppose the zi of the modes a,/3, ..., ~ are given as 
z~ (=), ..., zi (~. Suppose these modes are not linearly 
independent. Then 

ot'zi ('') + ... + sC'z (°  = 0Vi 

=¢, E! at least two coefficients ~ 0 

(since zi ~ O V i). 

At least one of the modes, say a, is a linear combina- 
tion of at least one other mode/3: 

Zi (r') = ,~ i  (fl) -~ ~ 7"f~i (a). 
8 

Now a and fl are orthogonal 

= + 

i i 6 

i 8 

.-- ~ / ~  Zi(fl)Zi(~)" 
i 

But 

y~,zit~)zi ~) ~ 0 (since ~ z i  (t~)2 = 0 => z~ = 0 V/). 
i i 

But a,/3 are orthogonal and hence Y.~zs(")z~(t3) = 0. This 
is a contradiction. The modes are therefore linearly 
independent. 

Hence, for N even 

A ( -  ly  + ~am{COs[ZTrrn(j- 1)/N]} 
m 

+ bm{sin[2mnq- 1)/N]} = 0, Vj 

:::1> A,am,bm = 0, Vm; 

and for N odd 

~,am{COS[2mnq-1)/N]} 
m 

+ bm{sin[2mn(j- 1)/N]} = 0, vj 

=>am,bm =0, ~m" 

This is used in solving the equations for a linear 
combination of primitive forms. 

2. The primitive forms are linearly independent 

Each primitive form is a linear combination of the 
normal modes (which are linearly independent). 

Consider a cos and sin form at ~o,,, and ~o m " [ - K ,  

respectively. The coefficients of a form at ~O"m in 
the linear expansion in terms of cos[(2rrm/N)(/-1)] 
and s in [ (2mn/N)q-1) ]  are cos~o" and -sin~o", 
respectively. 

Let 

c,,,{cOS mCOS[(2=n/N)q- 1)] 
m 

- sin~omsin[(2mn/N)(j- 1)]} 

+ dm{cOs( Om + K)cos[(2=m/N)0"- 1)] 
- sin(~o,,, + K)sin[(27rm/N)(j- 1)]} 

- ' 0 .  

Since cos[(2mn/N)( j -  1)] and s in[(2mn/N)( j -  1)] are 
linearly independent and the pairs in m are linearly 
independent, we have 

CmCOS~0m + dmCOS~OmCOSx- dmsin~omsinx = 0 
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and 
Cmsin~o,,, + dmsin~o,,,cosx + d,,,cos~o,,sinx = 0 

for all m. Hence, 

sin~o,,(CmCOSq~m + d,,cos~o,,,cosx- d,,,sin~,mSinK) = 0 

COS~Om(CmSinq% + d,,sin~,,,cosx + dmcoS~omSinx) = 0 

for all m. This gives: 

d,,,sinx = 0 

or dm= 0 unless K = 0 or 77, which it does not, 

and C m C O S ~ O  m ~-" 0, 

CmSinq% = 0 => Cm = 0. 

Therefore the primitive forms are linearly 
independent. 

3. The coefficients in the linear expansion are 
independent o f  phase angle 

Since the normal modes of Em are linearly 
independent, the equations for the linear coefficients 
may be solved in groups of m. The expressions for a 
ring at q~,,, = R, with primitive forms at phase angles 
A and B, are 

- Q cos R sin B + Q sin R cos B 
XA(M) = s i n A c o s B -  cosA sinB 

(coefficient of cos form) 

QcosRsinA - QsinRcosA 
XB(M) - sin A cos B - cos A sin B 

(coefficient of sin form). 

Any equivalent primitive forms are generated by Co 
or S, operations: ~o'---, ~o'+ (27rm/N). Any ring will 
thus have equivalent forms (a different ring 
numbering) at ~o',,, + (27rm/N) (Pickett & Strauss, 
1971). 

P1 tX 
,' • P2  

PI' 

• P 2 '  

A description of the ring should be independent of 
the ring numbering chosen; i.e. the linear coefficients 
should be equal in both these cases. This can be 
shown to be the case. 

Consider the ring at q~,, = R, with the closest 
primitive forms at phase angles of A and B. An 
equivalent phase thus lies at ~Om+2mn/N. Let 
(2ran/N) = a. Then for this equivalent phase 

~0 (cos f o r m ) =  A + a 

~0 (sin form) = B + a 

q~ (ring) = R + a. 

The coefficients are given by XA' and XB'. 

XA' = - cos(R + a)sin(B + a) + sin(R + a)cos(B + a) 

sin(A + a)cos(B + a) - cos(A + a)sin(B + a) 

The numerator reduces to -cosRsinB + sinRcosB. 
The denominator becomes cosBsinA-cosAsinB.  
The numerator in the XB' expression is 

(cosRcosa - sinRsina)(sinAcosa + cosAsina) 

- (sinRcosa + cosRsina)(cosAcosa - sinAsina) 

= cosRsinA - sinRcosA. 

XA', XB" are therefore the same as those given for 
the ring at R, even though the primitive forms are 
different. 

If a form has neither C2 nor tr, symmetry, the 
enantiomeric form will not be generated by C,, 
or S, operations• Thus the phase angle of ~o+ 
(2mrr/N)[+(rr)] will not generate this form. It can 
only be generated by C2 though atom 1 followed by 
trh. This implies (Pickett & Strauss, 1971) 

~p---~ - t p +  I7"+ zr-- -~p. 

Thus if a form lies at ~o, the enantiomer lies at - ~p. It 
must be shown that the coefficients of enantiomers 
are the same, since the enantiomer may be generated 
by a different atomic numbering. 

P1 X 
p \  t 

\ -  

. . .p'  1' ~ .-'07 , p  

P' is generated from P by rotation of 2K, since the 
spacings of the primitive forms are 2r. We now show 
P' and X have the same linear coefficients. Since P'  
and P are related by a C,, operation these have the 
same coefficients. 

The form X 

XA= 
- cos(A + a)sin(A + K) + sin(A + a)cos(A + K) 

sinA(cosAcosr- sinAsinr)- cosA(sindcost¢ + sinKcosA) 

sinacosr- sinhvosa 

- sink 

The form P' 

XA= 
- cos(A + 2K- a)sin(A + K) + sin(A + 2K- a)cos(A + K) 

sin(A + 2x)cos(A + x)- cos(A + 2K)sin(A + K) 

This denominator becomes sinK. The numerator 
reduces to 

- cosxcos2Ksina + cosKsin2xcosa-- s inrcos2rcosa  

-- sinrsin2Ksina = -- sinacosx + cosasinr.  
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XB. The numerator of the forms: 

P': XB = cos(A + 2 x -  a)sin(A + 2K) 

-sin(A + 2 x -  a)cos(A + 2K) 

X: XB = cos(A + a)sin(A + 2K) 

- sin(A + a)cos(A + 2K) 

= - sina 

The expression for P' becomes sina. 
The coefficients of enantiomers are therefore the 

same. 

4. Two primitive forms (cos form and sin form) differ 
in phase only 

For example, primitive forms of eight-membered 
rings. 

COS FORM pi [/,'x 
, . -"  P2  

Consider the case where an equivalent form of the 
primitive cos form is the primitive sin form. An 
equivalent form of A" will therefore lie at P2. The 
coefficients of P2 and X will not be the same, but the 
coefficients of each cos and sin form will be reversed. 
The forms 2 and P2 are equivalent simply because 
the cos form and sin form are different phases of the 
same form. 

To show that the coefficients are inverted, consider 
the forms (1) and (2) 

I .--(2) 
I O~ 

~ s,;, ~ORM 

with the q~,,, of the cos and sin forms as A and B, 
respectively. 

-cos(A + a)sinB + sin(A + a)cosB 
XA(1) = 

sinAcosB - cosAsinB 

The numerator is given by 

- cosAcosasinB + sinAsinasinB + sinAcosacosB 

+ cosAcosBsina. 

c o s ( B -  a)sinA - s in (B-  a)cosA 
xB(2)  = 

sinAcosB - cosAsinB 

The numerator is given by 

cosBcosasinA + sinBsinAsina- sinBcosacosA 

+ cosBsinacosA. 

XA(2) is similarly equal to XB(1). 
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